Rain Radar Accumulation Tool in the Netherlands

Rutger Boonstra, KNMI (rutger.boonstra@knmi.nl)

Introduction

Measuring total precipitation has always been a challenge. Different techniques and developments of how to correctly measure rainfall have been used in the past, and a network of precipitation gauges is present and scattered over the Netherlands. Those measurements give valuable insights into the cumulative rain over a certain period of time. The drawback of this measuring method is that data is coming in with a delay and the coverage is some way less than 100%.

But what if there is a chemical or nuclear incident producing a cloud of dangerous/poisonous particles and decisions need to be made quickly? Rainfall is the primary mechanism by which both chemical and nuclear particles in the atmosphere may deposit on the surface where in turn they can pose a risk for the people on the ground.

RIVM, the primary institute monitoring air quality and related chemical/nuclear incidents in the Netherlands is working in cooperation with KNMI to assess where precipitation was/is falling during a chemical/nuclear event and determine which areas have/are been/being affected. This information in combination with model forecasts of both the plume of the spreading chemical/nuclear cloud and the expected rainfall by weather models is used to take adequate measures to protect the public.

Radar data

Because of the limitations of the rain-gauge network, an alternative means of determining deposition hotspots has to be found. Fingers will point to the radar immediately as the coverage problem is (virtually) being eliminated and the sampling frequency is small (5 minutes). Of course the use of radar data is not spotless either, and there are some drawbacks. Because of the scan-strategy of the radar and the pseudo-Cappi imagery used, the measurements on radar are an estimate of the rainfall-rate but are not always entirely correct. Therefore precipitation sums over the entire region that is covered by the radar are normally corrected with observations. During an event decisions need to be made quickly; there is no time for corrections as it will take time to get the data from the rain-gauge network, and preference goes to automatically generated output of threatened areas. Therefore the unadjusted radar data is being used to determine where the hotspots of rainfall can be identified during the period of exposure by a chemical/nuclear cloud and simultaneous rainfall measured by radar.

The KNMI-radar outputs standard HDF5-files, which are the source of data for the tool explained below.

Operational use

A tool has been developed to create a cumulative precipitation image within the area of radar coverage. Meteorologists can select the time-interval between which the radar imagery is being accumulated. This results in an image with hotspots of rainfall which can be matched with the model output of the plume of the chemical/nuclear incident.

On top of this the output is generated both as an image, as well as an ASCII file which can be used for further processing within other models or displays.

This simple yet very effective tool, gives quick insights into defining hotspots of rainfall within a certain time window and can be used swiftly when questions are being asked on this subject.

