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Introduction

In May 2011, as | was about to retire, Erik
Andersson, Head of the ECMWF Meteorological
Division, wanted me to re-write their User Guide.
Instead of the customary two-thirds of its content
devoted to the excellent ECMWF forecast system
and only one-third about how to make the best use
of its products, he wanted the reverse.

This challenge forced me to really take on the ques-
tion | had been pondering since the start of my
meteorological career more than 40 years before:
“What does a good weather forecaster do?”

During the work it become gradually clear to me
that skilful weather forecasters must not only have
a good grasp of the physics and dynamics of the
atmosphere, numerical models and ensemble
system, but must also have the ability to quickly
draw conclusions from a wide selection of, often
contradictory, information, an ability which is in
the literature referred to as ‘intuitive statistical
thinking’.

I will illustrate this with a common weather situa-
tion: the drop in wintertime temperature after the
lifting of low clouds.

An Illustrative Example -
the Dispersion of Stratus

Consider the following forecast: ‘The 2 metre
temperature of +3°C with low stratus will drop to -
5°C if the clouds disperse.’ If this is predicted by a
computer, the human forecasters might be chal-
lenged to justify their existence by ‘adding value’,
i.e improving on the computer’s deterministic fore-
cast.

It is not a trivial matter to calculate the accumulat-
ed effects of radiative cooling (depending on time
of day and year, moisture and stratification), heat-
ing from the ground, the effect of wind shear and
turbulence etc plus knowing to what degree these
phenomena are already well described by the
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model. With this challenge the forecasters are, in
my view, lured into competing with the determinis-
tic NWP on its own conditions.

But improving on the deterministic NWP is not the
only way the forecasters can modify the -5°C fore-
cast. They can for example express doubts that the
clouds will disperse at all!

Assume that they arrive to the conclusion that the
clouds are slightly more likely to stay than to
disperse. If they can roughly quantify their judge-
ment into a probability of 40% for clearing and
60% for remaining overcast, the ‘best’ all purpose
temperature forecast is neither +3°C or -5°C but the
weighted average +0°C.

But the forecasters can do more. They know that
the public generally is more sensitive to a drop in
the temperature than it remaining unchanged.
Consequently, if they are wrong, it is for most
purposes better to be on the cold side than on the
mild. This insight might make the forecasters tweet
the forecast to -1°C or even -2°C.

But of course the best solution is to be able to tell
the clients in probabilistic terms that although it is
most likely (60%) that the clouds will stay with
+3°C there is a substantial possibility (40%) they
will break up and lead to a temperature drop to -
5°C.

These three different deliberations are made, not
on a physical but on a statistical basis.

a) The +0°C forecast was made to minimize the
expected statistical error and the general ‘pain’ the
public would suffer. This assumes a symmetric
penalty function, that errors in the positive direc-
tion are as bad or harmful as those in the negative
direction.

b) The -1°C or -2°C forecasts, however, assume an
asymmetric penalty function where a positive error
(forecast is too warm) is deemed as being more
harmful than a negative error (forecast is too cold).
Note that all these three forecasts +0°C , -1°C or -



2°C will probably not occur and if they do, only for a
few minutes in case of a clearing. Still they are ‘the
best’.

c) Finally, to express uncertainty verbally or numeri-
cally (though explicit use of probabilities) really
demands that forecasters are more open and
developed in their use of statistics, and their
understanding of these methods becomes more
crucial.

When the forecasters make these deliberations
they might take a lot of information into considera-
tion, such as deterministic forecasts from more
than one model, ensemble systems, statistical
interpretation schemes etc. For short range fore-
casts they might also have to consider newly
arrived information from observing stations, satel-
lite and radar. Add to this ideas and suggestions
from the forecasting team as a whole.

The final forecasts are less products of physical
insights as of an intuitive, ad hoc weighting togeth-
er of often contradictory information where the
forecasters act like ‘intuitive statisticians’ without
being really aware of it.

Statistics — the Science
of Uncertainty

That weather forecasters act like ‘intuitive statisti-
cians’ should not come as a surprise. Weather fore-
casting has been non-perfect since its start 150
years ago. The interesting thing is why this has to
be stressed. Perhaps their one-sided deterministic
Newtonian physical education is to blame.

1. Weather forecasting is intrinsically a statistical,
or rather probabilistic problem. Prior to Edward
Lorenz’s discovery of the ‘Butterfly Effect’ there was
among meteorologists only a qualitative under-
standing of the role small changes in the initial
conditions could affect forecasts.

2. To quantify and communicate this uncertainty
increases the value of the forecasts. This has been
known since the early 20th century when Cleveland
Abbe in the US and later Anders Angstrom in
Sweden promoted probability forecasting. What
has muddied the water was the erroneous percep-

tion that probabilities or uncertainty information
served to ‘cover the backs’ of the forecasters.

3. Indeed, it is in uncertain weather situations that
the forecasters really have a chance to show their
skill. Experience shows that it is when the forecast-
ers communicate their uncertainty in an active,
clever way that they get appreciation from the
public. The ability to turn a potential weakness,
non-perfect and uncertain forecasts, into an advan-
tage could be more explored by weather forecast-
ers.

The main political or psychological conceptual
problem is not that ‘probabilities are difficult to
understand’ but that many users of weather fore-
casts want them in a deterministic, categorical
form. This essentially means that the forecasters
make the decisions for them, thus relieving them
from any controversial responsibility for ‘wrong’
decisions’.

This is, fortunately or unfortunately, not only a
problem in weather forecasting but in all straights
of life, according a wide range of current literature.
They are aimed at economists, medical doctors,
politicians, military commanders etc all involved in
decision making under uncertainty. Among these
Daniel Kahneman’s bestseller ‘Thinking Fast and
Slow’ stands out. It is not only written by a Nobel
Prize Laureate, it is also a good read. He presents a
number of case studies which, although not of
meteorological nature, still can be ‘translated’ into
meteorology.

His discussion on ‘fast’ and ‘slow’ thinking (System
1 and System 2) explains, at least to me, why a lot
of the meteorological educational activities | have
been involved in or subjected to, don’t seem to
have left much impression in the operational activi-
ty. Perhaps this is because most of the teaching
has been designed to serve our ‘slow’ system 2 (to
pass exams and conduct scientific investigations)
and not so much the ‘fast’ System1 (quick decision
making in the heat of operational duties).

The Problem with Probabilities

Any teaching of uncertainty has to involve the
concept of probability. The problem here is that it

1. Specialist meteorologists, such as military or marine weather forecasters, know their customers sufficiently well to be able to essen-
tially make the decisions for them by presenting their forecasts in a confident deterministic way.
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emerged quite late in the human history (in
gambling in the 16" century, in science around
1800). Then there are at least three different types
of probabilities:

a) the classical, for example the chance of getting a
tail when tossing a coin or a ‘6’ when tossing a die

b) the frequentist, for example the number of rainy
days over 30 years which define the probability of
rain for a certain location

c) the subjective or Bayesian probability where we
try to estimate the chance that our football team
will win, being 2-1 down with 15 minutes remain-

ing.

We will meet all three categories in weather fore-
casting; in particular the Bayesian varity since
purely subjectively estimated probabilities as well
as those from the ensemble system belong to this
group. Probabilities from MOS (Model Output
Statistics) belong to the frequentist category since
they are based on observed relations between past
forecasts and verifications. Knowledge about the
classical definition is useful when we want to
understand the problems with combining or split-
ting up probabilities.

A Five-point
Programme

Having identified weather forecasters as ‘intuitive
statisticians’ allows us to translate the advice given
in the above mentioned literature into forecasting
meteorology, formulated as a five point
programme:

1. Combat over-confidence

2. Do not underestimate the power of random-
ness

3. Pitfalls estimating probabilities
4. How to present probabilities
5. How to make decisions from probabilities

For each section and sub-section a brief introduc-
tion from the non-meteorological world will be
followed by examples from operational weather
forecasting.

Combat overconfidence

Over-confidence is a global human phenomenon or
weakness. It stems mainly from
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a) Conclusions from too small samples. Commonly
three months of NWP output (ran twice a day yield-
ing 180 forecasts) is regarded as an adequate
sample size. But this is only true if the forecasts are
mutually independent. The nature of data assimila-
tion, using a “first guess” then only partly modified
by observation, creates dependence between
successive analyses and thereby forecasts. To mini-
mize this dependence one might select only every
5" NWP run. In other words, results from a 180
case sample is as representative as one of a 36
case sample.

b) The confirmation bias: There is a human tenden-
cy to look only for arguments which support one’s
opinion. It is of course equally important to search
for contradictory arguments. Another human weak-
ness is to become more stubborn when challenged
by counter arguments, when the most logical reac-
tion would be to hold on to the opinion, but
increase one’s uncertainty about its validity.

¢) The selection bias: Another common error is to
terminate an investigation, for example concerning
the quality of two different forecast methods, when
the results seem to confirm the ‘desired’ conclu-
sion. A similar error is to discard ‘bad’ data or
‘outliers’ too superficially.

d) Lack of knowledge: If you have never heard
about tsunamis you confidently stay on the beach
when the sea water is rapidly receding. If you are
not aware of the existence of katabatic winds in
mountains you might underestimate the chances of
strong winds during a high pressure regime. Not
knowing that the Coriolis Effect also has a strong
impact on sea breezes will affect your sailing fore-
cast.

e) Lack of imagination: The ‘normalcy bias’
assumes that since a certain type of events has not
happened before, it will not happen in the future
either. The atmosphere normally behaves in a
‘familiar fashion’, but the exceptions are numer-
ous. The ensemble forecasts are not able to
include all possible synoptic scenarios. Because of
the limited number (N) of members, a fraction 2/N
of verifying observations has to be outside the
spread.

Our quest for certainty, leading to over-confidence,
also makes us underestimate the power of purely
random effects.



Do not underestimate the power
of randomness

Randomness is often seen as something rather
harmless, some ‘noise’ that will even out in the
long term. As will be shown below, random effects
can in meteorology yield quite convincing patterns
and spurious correlations. In meteorology we
encounter the power of randomness in at least five
situations:

a) Conclusions based on too few samples: False
regularities will of course more easily appear in a
small data sample. Since our memory is short we
tend to remember weather cases only a few weeks
back, during which time false regularities or appar-
ent systematic errors might easily appear.

b) Conditional sampling: If we evaluate the fore-
casts with respect to predicted anomalies, such as
heavy rain, cut-offs west of Portugal or tropical
cyclones we will notice an increasing degree of
over-forecasting with increasing lead time. This
does not necessarily constitute any systematic
error but non-systematic errors due to the lack of
predictive skill. If we on the other hand evaluate
the forecasts after occurred anomalies, the oppo-
site will appear to be true: an apparent increasing
under-forecasting with lead time. Only if the
number of forecast and observed anomalies over a
specific time period differ in number (irrespective if
they verified or not) does this indicate a model
systematic error.

c) The regression to the Mean Effect: This powerful
statistical artefact, discovered by the British 19th
century scientist Francis Galton, causes misinter-
pretation of verification statistics during persistent
anomalous periods. With increasing lead time the
forecasts’ skill decreases and the forecasts start to
scatter more and more around the climatological
mean. This is reflected in an increasing mean error
which might be mistaken for a model drift.

d) The helpful Regression to the Mean Effect: In
cases of large uncertainties a forecast based on
climatological averages can serve as a default. This
is what aviation forecasters make use of in their 2-
hour TREND forecasts when some extreme weather
has unexpectedly appeared at the airport. So do
medium range forecasters when faced with an
extreme development in the ECMWF deterministic
forecast beyond the first 3-4 days. So does the
ensemble system in particular during the last 5-8

days in the extended 15 day epsgrams: a smooth
gravitation back towards the (model) climate.

e) Other biases: The ‘publication bias’, also called
‘the desk drawer effect’, occurs when negative
results are not publicised. This increases the risk
that positive results, arrived to by pure luck, are
accepted. When other scientists try to confirm the
result and fail, they might wrongly suspect manipu-
lation or fraud. The Slutsky-Yule Effect creates
convincing, but spurious periodic variations in time
series when subjected to running averages.

These two sections have pointed out two main
sources of misjudgement of probabilities: over-
confidence and underestimating the power of
randomness. These two also figure among numer-
ous other pitfalls when estimating probabilities.

Possible pitfalls trying to estimate
probabilities

a) The halo effect: We encounter the ‘halo effect’
when a certain NWP model for non-rational reasons
is given unduly high weight. Before ECMWF came
into being weather forecasters in Norway tended to
favour the American model, the Danish forecasters
the British and the Finnish forecasters the German
model, apparently echoing their countries’ alle-
giances during the Second World War.
Consequently forecasters at SMHI, in ‘neutral
Sweden’, looked keenly at all three models.

b) The primacy effect: The order under which infor-
mation arrives might have impact on the user. If
output from model A arrived earlier than from
model B of equal quality, the forecasters would put
more weight to A than B. See also the ‘confirmation
bias’ above.

¢) The availability error: Verifications of manual
thunderstorm predictions show that the +24 hour
forecasts are better than the +12 hour ones,
counter to what could be expected. When the +24
hour forecast is made in the afternoon, for the next
day’s afternoon, the daily cycle makes local thun-
derstorms ‘available’ on the maps or radar screens.
In the morning, 12 hours later, there are rarely
thunderstorms ‘available’ when the +12 h thunder-
storm forecasts are made, just mist or perhaps fog
patches.

d) The mean and the variance: Although the
ECMWF model, presently at least, is ‘the best’ glob-
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al NWP model statistically, doesn’t mean that it is
‘the best’ every day. The day-to-day variation in
skill is much larger than the average difference of
the mean skill of other global models. An optimal
approach is therefore to consider all NWP models.

e) Correlation between models: The heuristic
weight we might put on the NWP models should
not only depend on their average skill but also on
similarities in their characteristics reflected in their
mutual error correlation. Assume for the sake of
discussion that the ECMWF operational model, its
EPS Control and the UK Met Office global model are
equally skilful. This would still motivate a weight »
33% on the UK model and < 33% for each of the EC
models, since they are more similar than each of
them with the UK model.

f) The representativity error: It is a common human
mistake to confuse what is ‘probable’ with what is
‘typical’. In a lottery it is a common mistake to
believe that a sequence 853347 is more random
and more likely to win than the sequence 111111
just because the former looks more random. The
representative error might partly explain why mete-
orologists tend to favour detailed high-resolution
NWP forecasts with realistic looking but unreliable
details than forecasts where these details have
been smoothed out or removed. The latter will no
longer look like ‘typical’ images of the atmospheric
flow pattern.

g) Consistency and forecast skill: We tend to trust a
person who doesn’t change his mind too often, but
is ‘consistent’. This does not apply to NWP where
the correlation between the spread between
consecutive forecasts and skill of the most recent
forecast is small if not zero. Any connection ought
to be between the spread and the mean of the fore-
casts.

h) The outcome, memory or hindsight bias: These
artefacts reflect the unconscious selection of infor-
mation, either because it is very recent or because
knowledge about the final outcome would favour
information that supports this development. After
an unexpected storm it is of course easy to find
exactly those pieces of evidence (an isolated
observation, an individual forecast or an odd
ensemble member) that would indicate that the
storm would develop.

i) The bandwagon effect: The tendency to do or
believe things because many other people do or
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believe the same. This is important at weather
conferences where a minority view might not
change the deterministic part of the forecast but
modify its probabilistic part.

j) Deceptive consistency: In cases where the last
three deterministic forecasts are ‘jumpy’ we tend to
trust a sequence where the last two agree rather
than a sequence where the first and the last agree,
but the one in between differ (‘flip-flop’). But that
that is to ignore the importance of their mutual
correlation. If two persons have the same opinion
we regard it as more significant if they do not know
each other than if they are twins. The first forecast
might be the on average least skilful but on the
other hand less correlated with the most recent.
Their agreement therefore carries more weight than
the agreement between the two consecutive fore-
casts.

The role of the ‘intuitively statistical forecasters’
could very well end here. But their skill is also
needed to communicate their results.

Communicating probabilities

The best indication that probability information has
been understood by the receivers is that right
conclusions have been drawn.

a) Odds, intervals or verbal communication? It is
not of paramount importance how the probability is
communicated (numerically or verbally) as long as
the right action is taken. Using odds, like ‘4 to 1’
instead of 20% will be understood by people who
are regular gamblers. Intervals implicitly suggest-
ing probabilities of 50-80% that the truth will lie
within the interval are also suitable.

b) Temporal and/or spatial intervals? On a more
basic level it must be known if the probability
refers to the chance that a certain point will be
affected during a time interval, or at a specific time
the chance that some point in an area will be
affected? Or a combination of both? Studies have
shown, although not conclusively, that laymen
grasp a 20% probability better if it is expressed in
words like ‘in ten cases similar to the one we have
now, rain will follow in two cases’.

¢) The 50% probability problem: The 50% probabil-
ity is often misinterpreted as complete ignorance,
but is only so in the case of tossing a coin where
the probabilities of either outcome is 50%. A 50%



probability for snowfall in Barcelona or for 26°C in
Reykjavik would not be a trivial forecast.

d) Total uncertainty: In case of total uncertainty the
probabilities should coincide with the climatologi-
cal averages. Normally this only applies for longer
lead times when the predictability has decreased
to zero, but it might of course in rare cases also
signify shorter forecasts. It can be shown both
mathematically and practically that it is optimal for
any user to be told about total uncertainty rather
than to be given a deterministic forecast which
would be no better than a pure guess, for example
from the last deterministic forecast from the state-
of-art NWP model.

e) The popularity or optimism bias: In a quest to
remain popular with the audience the forecasters
cannot always resist the temptation to “look on the
bright side”, i.e. exaggerate the probabilities for
favourable or popular weather.

f) The framing effect: When a major city council
once was warned about a 20% probability for
severe thunderstorms not much was done, in
contrast to when they heard that there was a 70%
probability for the same extreme weather some-
where in the region. If the climatological probabili-
ty is 2% then the forecast probability 20% can be
presented as something ‘10 times more probable
than normal’.

When the uncertainty information has been esti-
mated and presented in a useful way one would
assume that there is nothing more the forecaster
could do. But according to the current literature
there is a global problem with decision makers
having difficulties to make rational decisions in
light of uncertainty. Weather forecasters with their
unique expertise in meteorology and probability
theory can therefore still make a contribution.

Decision making from probability
information

We now enter into a field that is well covered by an
extensive literature outside meteorology. Decisions
are not only based on economic considerations,
but equally often on political or highly subjective
criteria where prestige, pride and status play an
important role. The popularity of deterministic,
categorical forecasts has, as mentioned eatrlier, its
objective root in that it can relieve the decisions
maker from at least some of the burden of respon-

sibility for their decisions, and then perhaps also
the blame if something goes wrong.

But even if we restrict ourselves to monetary values
it is important to realise that the commonly taught
‘cost-loss’ model for decision making is just the
first approximation. Its says that if a loss L is likely
with a p% probability then a cost of ¢ < pL is well
spent. But does it work in the following case?

-Would the reader participate in a ( free) lottery
where there is a 80% chance of winning 1000
euros or be given 700 euros straight in the hands?

According to the ‘cost-loss’ reasoning the expected
outcome of the first choice is 100 euros larger than
the second. But even professors in mathematical
statistics would have taken the second choice — if it
had been an isolated opportunity. If it is repeated,
as a way to pay your salary, the first choice is opti-
mal.

According to the literature people asked to choose
between a 50% chance of winning 2000 euros or
getting 1000 euros straight in the hand, prefer the
second ‘safe’ option. However and interestingly,
faced with a choice between a 50% chance of losing
2000 euros or a certain loss of 1000 euro people
prefer to gamble, offering a 50% chance of losing
nothing. The conclusion is that people tend to be
more motivated to avoid a loss than a chance to win.

In weather forecast applications this would
perhaps mean that a customer with a potential loss
of 100 euros and a protection cost of 30 euros
would not, as suggested by the cost-loss model,
take action when the probability is just » 30%, but
when itis > 30%.

Studies of decision making in weather forecasting
are important in order that we avoid dismissing as
‘stupidity’ decisions by our customers that at a
closer inspection turn out to be rational.

Summary

When NWP was introduced around half a century ago
it was said that the future role of the forecasters
would be to communicate the NWP information to
the customers and, knowing their needs, also help
them to make optimal decisions in their own interest.

As with other aspects of operational weather fore-
casting there is not, and has never been, much
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documentation about what this would involve. An
attempt to define the role of the forecaster in the
‘computer age’ has been made in this article.
However, the conclusion would have been equally
valid before now; good forecasters have always
acknowledged the intrinsic uncertainty in weather
forecasting and cleverly use it to demonstrate their
skill.

In spite of the prophesies that ‘in 5-10 years there
will be no need for weather forecasters’, first heard
by the author in 1966, it seems there have never
in the history of meteorology been so many fore-
casters around. This is particularly true for the
private sector which cannot be suspected of
employing meteorologists on humanitarian
grounds.
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If the aim had been to create an automatic weather
service of the 1966 standard, this could technically
have been possible in the 1980s with the emer-
gence of the high-resolution primitive equation
models. The reason why this did not happen must
among other factors involve the fact that with
increasing forecast skill the demands from the
public and paying customers have increased — and
will continue to increase!

The scenarios oulaid in this article are therefore
just as valid now as they were in when Fitzroy start-
ed operational weather forecasting in the 1860s,
and will continue to be just as valid in the futre.



